1	(a)	A Fibonacci-type sequence starts The sequence is continued by adding	3 the n	-8	
		Work out the next two terms.	uio p	revious two terms.	[2 marks]
		Answer		and	

2	The 5th term of a linear sequence is 17	
	The 6th term of the sequence is 21	
	Work out the 100th term of the sequence.	[3 marks
	Answer	

3	A sequence of	patterns is	made using	horizontal	sticks and	vertical sticks.

Pattern 1	Pattern 2	Pattern 3

The table shows the number of horizontal sticks and vertical sticks in each pattern.

Pattern	Number of horizontal sticks	Number of vertical sticks
1	2	2
2	4	3
3	6	4

What fraction of the total number of sticks in Pattern n are horizontal?		
Give your answer in terms of n .	[2 marks	
	[3 marks]	
Answer		

4 The first three terms of a sequence are x = y = xy

The sequence is continued by multiplying the previous two terms.

4 (a) Circle the 5th term of the sequence.

[1 mark]

 $r^{3}v^{3}$

 $x^{5}v^{5}$

 $x^{3}v^{4}$

 x^2y^3

4 (b) The 8th term of the sequence is x^8y^{13}

The value of this term is negative.

What does this mean about the values of x and y?

Tick one box for each row.

[2 marks]

	Must be positive	Must be negative	Could be either
x			
у			

Turn over for the next question

5

A is an arithmeti d Here are the first					
	13	16	19	22	
G is a geometric Here are the first					
	2	4	8	16	
	<i>n</i> th	term of A = 8	8th term of G		
Work out the valu	e of n .				[4 marks
work out the value	e oi n.				[4 m

6	Four consecutive triangular numbers are	6	10	15	21		
	Write down the next triangular number.					I	[1 mark]
	Answer						

7	The 47th triangular number is 1128	
	The 48th triangular number is 1176	
	Work out the 49th triangular number.	[1 mark]
	Answer	

8	The n th terms of two linear sequences, A and B, are added to give the n th term of a new sequence.	
	The new sequence starts	
	8 13 18 23	
	The n th term of sequence A is $n+1$	
	Work out the n th term of sequence B.	
	[4	marks]

Answer _____

9	(a)	Here is the rule for a sequence.	
		After the first two terms, each term is the sum of the previous two terms	ms
		The 1st term is 33	
		The 2nd term is x	
		The 4th term is 73	
		Work out the value of x .	[3 marks]
		<i>x</i> =	
9	(b)	An expression for the n th term of a different sequence is $n - n^2$	
		Ruth says,	
		"All the terms will be negative because n^2 is always greater than n ."	
		Is she correct?	
		Tick a box.	
		Yes No	
		Give a reason for your answer.	[1 mark]

10 Here are the first three Patterns in a sequence made up of small squares.

10 (a) On the grid, draw Pattern 4

[1 mark]

The expression for the number of small squares in Pattern n is $n^2 + 4$ Work out the least value of n for which the number of small squares is greater than 500

[1 mark]